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Traditional magnetoresistance formulae used to include differences of resistivity of the  samples. However, bath conditions 
and film constituents were not taken into account. Based on the experimental results, a neural network (NN) model-based 
explicit formulations were developed to predict the magnetoresistance (MR) of electrodeposited CuCoNi alloys in terms of 
the amount of film constituents, namely concentrations of Ni in the electrolyte (e), ambient temperature (T), R(0) is the 
resistance without applying a magnetic field, R(B) is the resistance of sample measured under the applied magnetic field, 
Nickel content at the film % (Ni), Cupper content at the film % (Cu), Cobalt content at the film % (Co), lattice parameter of 
the films (a), film thickness (t),  and magnetoresistance (MR). The test results have revealed that the film compositions were 
very effective on the magnetoresistance of electrodeposited alloys. Besides, it was found that the model developed by using 
NN seemed to have a high prediction capability of magnetoresistance of CuCoNi alloys. 
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1. Introduction 
 
In the last decades, a growing interest on the granular 

alloys composed of magnetic clusters embedded in a 
metallic matrix has appeared due to the discovering of 
their giant magnetoresistance (GMR) properties. The 
GMR was first observed in multilayers of metallic and 
magnetic layers [1], and than Berkowitz et al. and Xiao et 
al. [2] observed simultaneously that granular alloys also 
presented GMR, the origin of it being similar as in the case 
of the multilayers, that is, the spin scattering of the 
conducting electrons at the magnetic granules, principally 
at the interfaces.  

Generally, the binary granular alloys with GMR are 
composed of two immiscible elements. The way of getting 
a metastable solid solution of both elements is achieved by 
the use of ultra-rapid quenching techniques such as melt-
spinning, laser-ablation, sputtering, etc.  Alternatively, 
electrodeposition technique has been demonstrated useful 
to prepare Co–Cu-Ni films consisting of a metastable solid 
solution.  Granular thin film systems have the advantage of 
simplicity of fabrication over the multilayers. Of the 
various methods available for the preparation of thin films 
exhibiting GMR, electrodeposition [3] is the simplest and 
least expensive. Electrodeposition becomes more attractive 
due to its ability to deposit in geometries where 
conventional deposition processes would fail. 

In an alloy such as thin film, the properties of the 
constituents and the interactions between them determine 
the behavior of the material. Several mathematical 
modeling techniques such as linear/non-linear regression, 
genetic programming, and neural network (NN) can be 
attempted to mimic some of the basic physical properties 

of materials in terms of the film constituents. In recent 
years, NN models have shown exceptional performance 
over regression tools and genetic programming, especially 
when used for the pattern recognition and function 
estimation. An artificial neural network (ANN), or neural 
network (NN) for short, utilises interconnected 
mathematical nodes or neurons to form a network that can 
model complex functional relationships. The technique is 
particularly suited to problems that involve the 
manipulation of multiple parameters and non-linear 
interpolation, and as a consequence are therefore not easily 
amenable to conventional theoretical and mathematical 
approaches. Neural networks have therefore seen growing 
application in materials property (mechanical and 
physical) determination, particularly the more difficult to 
analyze complex multiphase and composite materials, 
which are growing in popularity. 

Guessasma [4] was used the ANN in order to relate 
milling time, vial and plateau velocities to coercivity, 
squareness ratio, cubic phase ratio and crystallite size of 
Co and Co-Ni materials. Scott et. al.[5] showed the 
possible applicability of NN to estimate the functional 
properties of ceramic materials. Hamzaoui et.al. [6] was 
predicted structure and magnetic properties of Fe-Ni alloys 
over a large range of process parameters.  

Altinkok et.al. [7] were predicted using a NN, tensile 
strength and density and bending strength and hardness [8] 
of particulate reinforced Al–Si–Mg aluminium matrix 
composites, and mixture and pore volume fraction in 
Al2O3/SiC ceramic cake [9].  

The magnetoresistance (MR) is defined by the 
function of MR= (R(0)-R(B)) /R(0) where R(B ) is the 
resistance of sample measured under the applied magnetic 
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field and R(0) is the resistance without applying a 
magnetic field. There is no any study connecting with the 
film constituents and bath concentration to 
magnetoresistance. The objective of this paper is to 
develop a NN model-based explicit formulations to predict 
the magnetoresistance (MR) of electrodeposited CuCoNi 
alloys in terms of the amount of film constituents, namely 
concentrations of Ni in the electrolyte (e), ambient 
temperature (T), R(0) is the resistance without applying a 
magnetic field, R(B) is the resistance of sample measured 
under the applied magnetic field, Nickel content at the film 
% (Ni), Cupper content at the film % (Cu), Cobalt content 
at the film % (Co), lattice parameter of the films (a), and 
film thickness (t).  

A ANN was used to quantify the effect of bath 
conditions (input parameters) on magnetoresistive 
properties (output parameters) of the electrodeposited 
CuCoNi alloys. 

Electrodeposition of Cu–Co-Ni films was carried out 
at a constant current density from an aqueous electrolyte 
of sulfates of Cu, Co and Ni. The experimental details 
were given our previous study [10].  

 
 
2. Application of neural network (NN) 
 
2.1. Brief overview of neural network 
 
Neural network is a functional abstraction of the 

biological neural structures of the central nervous system 
[11-13]. It can exhibit a surprising number of human 
brain’s characteristics e.g. learn from experience and 
generalize from previous examples to new problems. In 
NNs, there are a lot of cells and connections between 
inputs and outputs. These connections between neurons 
get a transmission value as for the relation which is called 
as weight. The weights could be renewed for every new 
data. After realizing, a present database teaching the 
system is easily updated with the data to be obtained later 
[14-16]. The NNs are systems composed of many simple 
processing elements operating in parallel whose functions 
are determined primarily by the pattern of connectivity. 
These systems are capable of high-level functions, such as 
adaptation or learning, and lower level functions such as 
data pre-processing for different kinds of inputs. The NNs 
have been inspired both by biological nervous systems and 
mathematical theories of learning, information processing, 
and control.  

Neurons are the main processing elements of the NNs. 
A neuron basically contains three main components 
namely weights, bias, and activation function. Multi layer 
perception (MLP) is the basic and commonly used NN 
model. There are at least three main layers in a MLP 
which are input, output, and hidden layers. Each neuron in 
input layer is connected to the neurons in the hidden layer, 
and there are no connections among the units of the same 
layer. The number of neurons in each layer may vary 
depending on the problem. Networks with biases can 
represent the relationships between the inputs and outputs 
more easily than the networks without biases [17]. 

The weighted sum of input components can be 
calculated by using the Equation 1:  

∑
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Where xi represents the input value of ith neuron, wij 
represents the weight coefficient between ith and jth 
neurons, n is the number of input neurons that comes to a 
cell, b is bias value. Activation function is a function that 
processes the net input obtained from the sum function and 
determines the cell output. In this study, tangent-sigmoid 
transfer function is employed in the proposed NN model. 
The output of the jth neuron after activation can be 
evaluated by using the Equation 2: 
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2.2 Data Set 
 
In order to achieve explicit formulations for the 

magnetoresistance of electrodeposited CuCoNi alloys, 
experimentally obtained one hundred fourteen test results 
were used. Film component constituents were employed as 
the input parameters of the proposed NN model so that the 
explicit NN based formulations were obtained in terms of 
concentrations of Ni in the electrolyte (e), ambient 
temperature (T), R(0) is the resistance without applying a 
magnetic field, R(B) is the resistance of sample measured 
under the applied magnetic field, Nickel content at the film 
% (Ni), Cupper content at the film % (Cu), Cobalt content 
at the film % (Co), lattice parameter of the films (a), and 
film thickness (t) contents.  

Out of one hundred fourteen experimental results, a 
set of thirty-one data was used to train the model while the 
remaining data were involved in testing. The data were 
randomly selected to generate both the training and testing 
sets. Magnetoresistances of the CuCoNi alloys were the 
output of the models developed in the study. The 
distribution and the ranges of the different input 
parameters are given in Table 1.  

 
Table 1 Ranges and normalization coefficients of input and 

output parameters. 
 

Normalization coefficient Parameters Lower 
limit 

Upper 
limit c D 

e 1 40 0.04615 -0.94615 
T 23 320 0.006 -1.02 
V0 0.086 1.411 1.36363 -1.02272 
VB 0.085 1.411 1.36363 -1.02272 
Ni 1.564 11.465 0.181634 -1.18335 
Cu 66.6 78 0.15789 -11.41578 
Co 16.5 31.8 0.11764 -2.84117 
a 3.599 3.63 6.0 -216.9 
t 1.49 2.433 1.91489 -3.75319 
MR -2.112 0.0708   
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Fig. 1 Neural network model for prediction of magnetoresistance 
 
A 9-7-1 NN architecture as shown in Fig. 1 was 

adopted to develop the NN model. This architecture 
indicates that there are nine nodes in the input layer, 
corresponding to nine factors from nickel content in the 
electrolyte to film thickness, seven nodes in the hidden 
layer, and one in the output layer corresponding to the 
magnetoresistance of CuCoNi alloys. 

In order to acquire accurate results from the 
magnetoresistance to the execution of the training process 
of the NN, the input and output parameters were 
normalized in the range of (-0.95; 0.95) via Equation 3: 

 

dcnormalized +Γ=Γ                         (3) 
 

where Γ represents parameters used in the NN training 
process, c and d are normalization coefficients of that 
particular parameter.  

Taking these independent parameters into account, 
magnetoresistance can functionally be expressed as in 
Equation 4 as follows: 

 
),,,,),(),0(,,(   istanceMagnetores taCoCuNiBRRTef=

                (4)  
 

Two different learning algorithms, namely “Conjugate 
Gradient” and “Levenberg Marquaet” were used in 
training of the proposed NN model. After training the NN 
model, it was observed that Levenberg Marquaet gave 
better statistical results for the present database so that it 
was chosen as the training algorithm. Thereafter, the input 

parameters and weights of the trained NN were used to 
extract explicit expressions. The explicit neural network 
formulations for the magnetoresistance obtained from the 
proposed NN model can be expressed as in Equation 5: 
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) (-1.0635) (-0.3146)*(t)(0.0376)*(a)(-0.5017)*(Co)        
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2.3 Performance of the proposed models 
 
The performance of the proposed explicit formulation 

in Equation 5 was plotted in Fig. 2 for training and testing 
data sets. It was observed that a high prediction capability 
was achieved for both training and testing data sets even 
though the latter was not used for the training of the NN. 
Therefore, the NN appears to have a high generalization 
capability. The overall performances of sets for 
formulation in Equations 5 were evaluated via mean 
square error (MSE), percentage error, and the correlations 
coefficient (R). As seen in Table 2 that a high coefficient 
of correlation and a low mean square error were obtained 
for the training and testing data sets for formulation. The 
proposed NN models for the magnetoresistance of 
CuCoNi alloys had correlation coefficients of 0.9907, for 
training data set, and 0.9901, for the testing data set. 
Moreover, the mean square error of the magnetoresistance 
formulation was about 0.003223 and 0.040843 for the 
training and testing set, respectively. As it is seen these 
mean square errors are fairly reasonable. Furthermore, the 
models provided highly reasonable percentage errors of as 
low as 5.39 % for the training set and 10.48 % for the 
testing set. Figure 2 also demonstrated that the NN was 
quite successful in learning the relationship between the 
different input parameters and the output 
(Magnetoresistance).  
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Fig. 2a. Real and calculated wear results of  

magnetoresistance of electrodeposited 
CuCoNi alloy films for train set. 
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Fig. 2b. Real and calculated wear results of 

magnetoresistance of electrodeposited  
CuCoNi alloy films for test set. 

 
 
 

Table 2. Statistical performance of the proposed NN model. 
 

Statistical parameter Train set Test set 
Mean square error (MSE) 0,003223 0,040843 

Mean absolute percentage error 
(MAPE) 5,397904 10,48559 

Correlation coeffient (R) 0,9907 0,9901 
 

 
3. Conclusions 
 
Based on the findings of this study, the following 

conclusions may be drawn: 
• It was found that the models developed by using 
NN seemed to have a high prediction capability of  
magnetoresistance of electrodeposited CuCoNi alloys. A 
high coefficient of correlation and low mean square error 
values were obtained for the magnetoresistance 
formulations.  
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• The proposed NN models for the 
magnetoresistance had correlation coefficients of 0.9907 
for the training data set, and 0.9901 for the testing data set.  
• Mean square errors of the MR formulation were 
0.003223 and 0.040843 for the training and for the testing 
sets, respectively. As it is seen, these mean square errors 
are fairly reasonable. 
• The models provided highly reasonable 
percentage errors of as low as 5.39 % for the training set 
and 10.48 % for the testing set of magnetoresistance. 
 
 

References 
 
  [1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van  
        Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich,  
        J. Chazeles, Phys. Rev. Lett. 61, 2472 (1988). 
  [2] A. E. Berkowitz, J. R. Mitchell, M. J. Carey,  
         A. P. Young, S. Zhang, F. E. Spada, F. T. Parker,  
         A. Hutten, G. Thomas, Phys. Rev. Lett.  
          68, 3745 (1992). 
  [3] W. Schwazacher, D. S. Lashmore, IEEE Trans.  
         Magn. 32, 3133 (1996). 
  [4] S. Guessasma, Fenineche N, JMMM. 2007;  
        doi; 10.1016/J.JMMM.2007.07.002. 
  [5] D. J. Scott, et al., Prediction of the functional  
        properties of ceramic materials from composition  
        using artificial neural networks, J. Eur. Ceram. Soc.  
        2007; doi:10.1016/j.jeurceramsoc.2007.02.212. 
  [6] R. Hamzaoui, S. Guessasma, O. ElKedim, Analysis of  
        structure and magnetic properties of nanocrystalline   
        milled alloys, Journal of Alloys and Compounds  

        (2007), doi:10.1016/j.jallcom.2007.07.111 
  [7] N. Altinkok, R. Koker,  Mater Des 27(8), 625 (2006). 
  [8] N. Altinkok, R. Koker, Mater Des 25(7), 595 (2004). 
  [9] N. Altinkok, R. Koker, Mater Des 26(4), 305 (2005). 
[10] İ. H. Karahan, Ö. F. Bakkaloğlu, M. Bedir, Pramana  
        68(1), 83 (2007). 
[11] I. Alexhander, H. Morton (1993) Neurons and  
        symbols: the staff that mind is made of. Chapman and  
         Hall, London. 
[12] M. A. Arbib (1995) Handbook of brain theory and  
        NN. MIT Press, MA, USA. 
[13] J. A. Anderson (1995) An introduction to neural  
        networks. A bradford Book, MIT Press, Cambridge,  
        MA, USA. 
[14] S. Akkurt, S. Ozdemir, G. Tayfur, B. Akyol, Cem  
        Concr Res 33(7), 973 (2003). 
[15] A. Mukherjee, S. N. Biswas, Nucl Eng Design  
        178(1), 1 (1997). 
[16] I. B. Topcu, M. Sarıdemir (2007) Prediction of  
         rubberized concrete properties using artificial neural  
          network and fuzzy logic. Construction and Building  
          Materials (in press).  
          DOI   10.1016/j.concuildmat.2006.11.007 
[17] A. Baykasoglu, T. Dereli, S. Tanıs, Cem Concr Res  
        34, 2083 (2004). 
 
 
 
 
__________________________ 
*Corresponding author:ihkarahan@gmail.com 

 


